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I. 

AXIOMATIC  AFPKOACII TO   idlAL  CORRIUTTNESS OF PMHiUANS 

by 

ZOHAR MANNA and AMIR PNUELI 

Applied Mathematics Department 

The Weizmann Institute of Science 

Rehovot, Israel. 

Introduction 

We present here an axiomatic approach which enables 

one to prove by formal methods that Ks program is "totally 

correct" (i.e., it terminates and is logically correct -- 

docs what it is supposed to do).  The approach is similar 

to Hoare •s approach [1969] for proving that a program is 

"partially correct" (i.e., that whenever it terminates it 

produces correct results).  Our extension to Hoare's method 

lies in the possibility of proving correctness and termina- 

tion at once, and in the enlarged scope of properties that 

can be proved by it. • 

The class of programs we treat in this paper is the 

class of while programs which are written in an Algol-like 

language allowing assignment statements, conditional state- 

ments, compound statements and while statements.  Go to 

statements and procedure calls arc explicitly excluded, but 

this restriction does not seem essential and can he removed 

by appropriate extension of the results presented here. 

mmm -  — ■MM» 
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2. 

To   review Hoare's  notation,   he   uses   assertions  oi 

the   form 

(pCx) q(x)} 

(where     p   ,   q     are  predicates,   and    B     is   a program segment) 

to  mean   that   for every     x   .   if    p(x)   holds  prior  to execu- 

tion  of    B     and  the  execution  of    B     terminates,   then  the 

resulting  values   after execution  will   satisfy    q(7)   .     His 

system consists  of several  basic  assertions   --   axioms--   de- 

scribing the  transformation on program variables effected 

by  simple   statements,   and  inference  rules  by which  asser- 

tions for  small  segments   can be  combined  into one  assertion 

for  a  larger segment.     Among those   are  a composition  rule, 

a conditional   rule,   and  a while   rule.     If starting  from 

the  axioms   about   the   simple  statements  of  a program    P   ,   and 

employing  inference   rules  one   is   able  to  deduce 

UCx)   |   P   I   »(x))   , 

then one  has   shown   in   fact  the  partial   correctness  of    P 

with   respect   to     4>     and    ^   ,   i.e.,   that   for every    *    satis- 

fying     *(x)     for which  the  execution  of    P    terminates, 

iHx)     holds   for   the   resulting  variable^'    values. 

The  assertion we  will  be using   in  our method  is  of  the 

form 
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s. 

< P(x)   I   B   I       qCx.x'l  > 

to mean   that   for every     x   ,   if    p(x)     holds  prior to execu 

tion  of    B   ,   then  the execution  of    B     terminates   and,   de- 

noting  the   set   of  resulting  values  by     x'   ,  q(x,x»}     holds. 

An   immediate  advantage  of this notation   is   the   ability  to 

express   relations  between  values  of variables  uefore  and 

after  the  execution.     In   the   rest  of the  paper we  develop 

the   inference   rules   for our system which will   also ensure 

that  termination   is  hereditary  from constituents   to  larger 

program segments. 

Since we   restrict  ourselves  to while programs,   the 

only element endangering termination  is  the while  statement 

We   attack  the  termination  problem of  the  while  statement  by 

requiring  the  existence  of a  function   from the  program 

variables'domain   to  a well-founded set.   such   that  on  sub- 

sequent  executions  of the  while body   its   value  decreases. 

This   function  serves   as   a counter  that   can  decrease  only  a 

finite number of times.     It   is   this  need  to  compare  values 

of the  counter  function  before  and  after execution  of the 

while  body which  motivated  us  to extend  the  notation  to 

relations     between  two  sets  of program variables. 

If using our  inference   rules  one   is   able  to  deduce 

< <Kx)   (   P  (   iKx.x')  > 

then  one  has   shown   in   fact   that     P     is   totally  correct 

wm ■Mi wm m^mmmam 



——T-«-™^- i'u  •    i mini ^■•^»—- " '" ■ ' 

4. 

with respect to .))  and  ^ , i.e., that for every  x 

satisfying *fö    ,   the execution of P  terminates and 

^(x.x1)  holds between the initial values  x  and the 

resulting values  x' .  If one is only interested in 

proving termination over  * it is sufficient to show 

< Kx) I P I T > , 

where T  is the identically true predicate. 

We should remark in passing that although our rules 

are sufficient to show total correctness, they are by no 

means unique or even the  best possible.  Many variations 

and improvements probably exist. 

11 •   The Inference Rules 

All the inference rules will be described by a set 

of antecedent; (conditions under which the rule is ap- 

plicable) followed by a consequent which is the assertion 

deduced.  Each of ehe antecedents is either an assertion 

(which should have been previously established) or a logi- 

cal claim.  All the logical claims are considered to be 

closed by universally quantifying each of their free 

variables on the same line. 

We present first the straightforwaru rules dealing 

with assignment, conditionals and compositions and leave 

the while rule, which is the most complicated, to the end. 
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(a)       Assignment  Rule 

p(x)  A  x'-fCx)  = qfx.x') 

< P(x)   |   x <-  f(x)   |   q(x,x')   > 

This  rule  is essentially an  axiom since  it  uses  only   logi 

cal  claims  to create  an  assertion.     Since     f    is  con- 

sidered  a basic  function   (not   a user-defined procedure), 

termination is  as  obvious  as  correctness. 

(b)       Conditional   Rules 

(bj)     If-then-else 

< P(x)   A   t(x)   |   Bj   |   q(x,7')   > 

< P(x)   A   ~t(x)   |   B2   |   q(x,P)   > 

< P(x)   |   if t(x)   then  Bj   else  B2   |   q(x,x')   >   . 

The  rule  should read as   follows:     If under    p(x)  we suc- 

ceeded in showing separately that whether we proceed with 

t(x)     true  to execute     B,     or with     t(x)     false  to execute 
B
2   »     qC^.x')  holds   in both  cases,   then  clearly  if we 

cross   the  combined conditional   statement  with    p(x)     ini- 

tially  true,  we  come  out  with    q{x,x')   . 

MM me  m\ i it MiiiiMmilinrar'iiliMiiii i'    nn-"-*- t---1 
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6. 

Since  the  antecedents   claim that  both    b1     and    B2 

when executed under the proper conditions  terminate,   the 

termination of the  conditional   statement  under    p(xj     fol 

lows. 

(52)   If  -  do 

< p(x)   A t(x)   |   B   |   qCx.x')  > 

p(x)   A  ~t(x)   z> q(x,x) 

<   pix)     |    if   t(x)    do   B    |    q(x,x')    >    . 

This is the one clause (empty else) conditional statement. 

Note that if we do not execute B we have to verify that 

q(x,x)  holds. 

The following four rules are composition rules.  Some 

of them facilitate composition of segments while the others allow 

composition of predicates. 

(c)  Concatenation Rule 

8 
< p,^) | B, | qJx.P) > 

< p2(x) | B2 | q^x.x') > 

q^x.x') 3 p^x') 

q.Cx.x') A q7(x'.x") 3 q(x,x") 

< p, (50 | Bj ;B2 ! qCx,?') > . 

(1) 

(2) 

(3) 

(4) 

aam a^. 
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7. 

Condition   (3)   ensures   that   the  state   after executiOi 

of    Bj     satisfies    p2   --  the needed   precondition   for B2   . 

Condition (4) characterizes q(x,xM) as a transfer 

relation between x before execution and x" after exe- 

cution  of    Bj;B2   .     It   requires   an  intermediate     x'     which 

temporarily  appears  after execution of    B       and before 
i 

execution  of    B.   . 

Note  that by our convention   (4)   is  universally 

quanitified over    x      x'and    x"   . 

(d)       Consequence  Rules 

(dl)     <  rix)   |   B   |   qCx.x')   > 

p(xj=> r(x) 

< p(x)    |   u   |   qCx.x')   > 

(d2)     < p(x)   |   B   |   s(x,x')  > 

s(x,x')  => qfx.x') 

< p(x)    I   R   |   qCx.x')    > 

The  validity  of  the   rules   is   obvious when we   consider 

the   meaning of the  assertion. 
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B. 

(e)       Or   Pule 

< Pjfx)   I   ■   I   q(x,x')   > 

< P2(x)   (   B   |   q(x,xM   > 

<  PiC^O   v   p2(3r)    I    B    I    q(x,x')    > 

This   rule   creates   the  possibility  for proof by  c 

an a 1 y s i s . 

(f)   And Rule 

< P(x) I B | q^x.x') > 

< P(x) I B | q2(x,x') > 

ase 

< P(x) | B | q^x.x') A q^x.x') > 

This rule enables one to generate incremental proofs, 

by proving separately two independent properties, and then 

combining them by the mid rule. 

Note that it is sufficient to piove termination for only one 

of the antecedents' conditions of the and rule, so that in prin- 

ciple we could have a stronger rule: 

< P(x) | B | q^.x1) > 

( P^ I B | q fx')) 

< Pfx) | B | q^x.x') A q1ix')   > 

where we reserve the notation {} to 'partial•correctness 

assert ion ' . 

% 
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v. 

u(x•)]   >      (1) 

(2) 

(3) 

4) 

(g) While   Rule 

< p(x)   A t(x)   |   B   |   qCx.x')   A   (-tCx')   v  u(x)   ; 

q(x,x')   A  tCx«)   =» p(x') 

qCx.x')   A  qCx'.x")   = q(x,x") 

p(x)   A   ~t(x)   = q(x,x) 

< p(x)   |   while   t(x)   do  B   |   qCx.x^A -tCx')   > 

where     (w,^)     is   a well-founded set  and    u:X -* W   . 

The  above   seemingly  complicated  rule   is  devised to 

overcome  several  difficulties   caused by  the need to prove 

termination.     Termination  of  a  looping while   statement   is 

essentially ensured here  by   Floyd's  technique   [1967],  namely, 

producing a function    u    whose  values keep strictly decreasing 

in   subsequent  executions  of    B. 

Condition   (1)   requires establishing a well-founded set 

(W,-<)     with a partial  order     <   satisfying the  descending 

chain condition,  i.e.,   there  is no infinite  chain of elements 

from    W, a,   >- a ^...     .     Also  required is  a partial   function 

u    mapping some  elements   of our data domain     X    into  elements 

of    W   .     If we  were   able  to  prove  that  after each  execution 

of    B   ,    u(x)  V  u(x')     (where  by writing this   inequality we 

also mean  that     uix)     and    uCx')     are  both  defined),   then 

clearly    B    cannot   repeatedly execute  an  infinite  number of 

times  or we would violate  the  descending chain  condition. 

The  demand  for the  existence  of a descending  counter 

which  is  defined  for  all  executions  of the while  body    B   , 

MM mmmm 
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can  be   relaxed  for  the   case  of  the last execution  of     R   . 

Thus   if wu   are positive   that  this   is  the  last  execution  of 

B   ,  we  may  allow the  counter  function to become   undefined 

or  stop  decreasing.     Accordingly,  we  require   in   (1)   the   al- 

ternatives  of either    ~t(x)     true    ,   implying  immediate  ter- 

mination,   or  the  existence  of  the  counter   function  which  will 

also  ultimately ensure   termination. 

Condition   (2)   requires   that  having executed    B     at 

'east   once,   and having     t(x')     correct   at   this   instance   , 

logically establishes     pU1)   .     p(x)     is  exactly  the  condition 

we need  to use   fl)   once  more   and thus propagate   the  validity 

of    q     for  all  subsequent   executions. 

Condition   (3)   ensures   that    qCx^x')     is   transitive. 

Therefore,  once we  showed  in   (1)   that  it  holds  over one  exe- 

cution  of    B   ,   it   follows   that   it will  hold over  any number of 

repeated executions  of     B   .     Consequently,   it  will  hold over 

the   repeating while   statement. 

Condition   (4)     deals  with   the  case   of the  initially 

vacant   while  statement,   where     B     did not  execute  even   once. 

There   also we  wish   to  establish   the   final   outcome     q(x,x')   . 

Note  that   (1)   establishos   the  termination  of    B     itself. 

In   tlic  proofs  appearing  in  the   following examples we 

often   wake  use  of  the   consequence   rule  within  whil^   rule   deri- 

V.-IH'MI.  without   explicit   indication.     Thus,   for example,  wo 

("•equontly   use   the   condition: 

-   
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< P(x)   A  tfx)    I   B   I   qCx.x')   A   [u(x)   S u(x')]   > 

which   implies  condition   (1)   above  by  t'.e  consequence   rule. 

Similarly we  use  the  consequent: 

< p(x)   |  while     tix)   do i   |   qCx.^')   > 

omitting   the  conjunct     -t(x')   . 

I 
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12. 

Ill Illustration of the Method 

We present below two examples  for which we  can prove 

total  correctness by our method.     Because of the  amount  of 

detail   involved we will  concentrate on proving termiration, 

with  only  general   indication of  the modifications   required 

to  add correctness. 

Example  1 

The following while program over the integers is 

supposed to compute the greatest common divisor of two 

positive integers x,  and  x, --gcd(x ,x ) -leaving 

the result in x, .  To refer to prcgram segments we 

use ordinary Algol labels. 

P: START 

f:   while    x    ^ x?   do 

e:    begin 

whi 1 e     x     >  x    do    a; x,   -   x2   ; 

d:     vhile     x.   >  x.   do    c:     x.  ■♦■ x.   -   x 

end 

HALT . 

We would like  to prove  that   the propram    P     is   totally 

correct with  respect   to 

<Kx, ,x2)   =   Xj   >   0   A   x2   >  0 

and 

■MÜ 
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^(x^x^x^x')   = x;  - gcdixx,x2)   . 

13. 

We prove  in detail  termination only.     The well-founded 

set we use  is the  domain of non-negative  integers with 

the  ordinary     <     relation.     As   the   termination   function 

for all while statements we   take    u(x.1x.)   =  x    ♦  x 

Our proof of termination  distinguishes  between  two 

cases   according to whether    x,   >  Xj     or    x^   <  x2     upon 

entrance  to  the    compound statement     e   .     In  the   first 

case,   statement    a    is executed at  least once  (x,   ♦  x2 

decreasing), while  statement     c     is  executed    0    or more 

times     (Xj   +  x2     remaining the same or decreasing).     In 

the second case  statement     a    is never executed    (x1   *  x2 

unchanged of course),  while  statement     c    is executed at 

least  once     (x,   + x2     decreasing).     We will  therefore 

analyze  in our proof    these   two  cases  separately and  then 

combine  their  results  using  the     Or rule. 

In   all   the predicates  of    the following assertions   the 

conjunction     x,   > 0 A  x     >  0     is  omitted. 
1 2 

Lemma     a)        (Assignment   Rule) 

Since     x,>x,   A  xl=x   - 
1 2 J-x2   A   x^x?   o x^x2>x:+x' 

we   ^e t 

< x,   >   x2   |   a   |   x,*x2>  x;>x;  > 

by  the   assignment   rule 

^mm 
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Lemma bl  (Whilo Rult-) 

Wc use the while rule with the following predicates: 

p(x) S t(x) : Xj > x? , 

qCx.x')   =  xi»x2   > x|*x;   . 

rendition   (1)   of the  while   rule   is   justified by  Lemma  al. 

We  obtain 

<   x,   >  x2   |   b x   ♦x     >   x'+x'    > Aj       A2 A,      A2 

<    X       >    X 2 \ X,     +    X,    >    X*    ♦    X '    > 1 2 j 2 

Nute   that  condition   (4)   of the while  rule   is   trivially  satis 

fiod because 

p(x)   A   n(x)   5   F  . 

Lemma  cl     (Assignment   Rule) 

Since 

X^Xj   A   xj-x     A   X^XJ-XJ   =  Xj+x^xj+x^   , 

we  get  by   the  assignment   rule 

I   c 

Lemma  dl      (While   Rule) 

Assume   tue  following substitution: 

p(x)   =  T   ,     t(x)   ^  x2   >  Xj   ,   and 

q^x')   =  x,   ♦  x2   ^ x|   +  x^   . 

rendition   (1)   of  the while   rule   is   justified by  Lemma cl. 

Nu  obtain 

<  T   |   d   |   xi   +  x2   ^  xj   +  x^   >   . 

Note   that  condition   (4)   is  satisfied since     x,   ♦  x2   ^  x    +  x 

Lrmma el      (Concatenation  Rule) 

Combine   Lemmas  bl  and dl   and use 

x1+x2
Nx|*x^   A  x|*x^;>x"+x2' z> x ♦xf>X,

1
,*xy 
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15. 

to   oht ain 

<   x,   >   x,    I   C   j   X,   ♦  x,   >  X|   ♦  x'   > 

We  now  treat   the  case  of    x,   <  x,     upon entrance  to    e 

Lemma  a2       (Assignment   Rule) 

Since 

F A x xi-x2   A   x;=x2   3   F 

we  have 

< F   |   a   |   F  >   . 

Lemma b2        (While   Rule) 

Take 

t(x)   =  x,   >  x2   ,    p(x)   ^  x,   <  x2   ,   and 

q(7,x')   :   xj   <  x^   A   (x,   *   x2   =   xj   +  x')   . 

By using  a  consequence  of Lenuna   a2  we  obtain 

"   xi   <  x2   I   b   I   xj   <  x'   A   (x,   *  x2   =  x;   ♦    x«)   >   . 

Condition (1) is satisfied here since by the consequence 

rules  < F j a | F >   implies 

< P(x) A tix)   | | | qU.x') A ~t(7•) > . 

Note that under the initial condition  x  < x   the while 
1 2 

statement  b never executes. 

Lemma  c2     (Assignment   Rule) 

By  assignment   rule 

< «i  < «a   I  c |  x,  ♦ x2  > x|  ♦ x»  >  . 

Lemma ''2  (While Rule) 

Take 

p(x) = t(7)   x, < x2 , and 

qU.x')   x, ♦ x2 x' ♦ X ' 

^■M 
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X      ♦   X       >   X'    ♦    X'    > 
1 2 I ; 

Ifülii},   L+mmu   c2  we  obtain 

< .,     <     K,     |     d 

Umm» v2     (loncatenation Rule) 

By  tombiniiiK   Lemmas  b2   and  d2  we   obtain 

< xi   *   x
2   I   G   |   x,   ♦  x2   >  xj   >   x^   >   . 

Uwiwa e     (Or  Rule) 

l;rom  bemmas  jl   and e2  combined we  get 

*  *.   ^  S   I  •  I  x, ♦ x,  > xj ♦ x» >  . 

Ivmmu f    (While   Rule) 

Take 

KJÖ     x1   ^  x
2   .    P(x)   -  xi   >  0  A x2   >  0   ,  and 

qCx.x')    -   Xj   >   0  A  x2   >   0   . 

Moti«   that     x,   >  0  A  x2   >  0    was   implicitly   assumed in  all 

previous  preconditions.     Using  Lemma e   in  condition   (1) 

w.    yet : 

< x,  > ü A x2 > o | p | x; = x; > . 
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We have thus shown termination with the additional 

information that on exit  x1 = x' . 
1 2 

On  trying to extend  this   result   to prove  correctness 

as well   as   termination,  we   run   into  the   notion  of 

incremental  proofs,   i.e.,  having proved some  properties  of 

the program  includintj  termination,  how do we  prove   addi- 

tional  properties  without   repeating  the whole  proof process. 

For this  particular example,   this   can be  solved by   the 

following  argument: 

Assume  that  instead of any    qCx.x')     appearing in  the 

assertions  we  used the  predicate 

. 

qCx.x*)  A (gcdU,^)   ■  £cd(x;,x;)] . 

It is not difficult to ascertain that all the lemmas 

remain valid. Consequently, we are able to prove for the 

complete  program: 

<X|>0AX|>0|P|    X; = x; A gcdU^x,) = gcd(x; ,xj)>. 

i.e., 

< x, > o A x, > o | P |  x; - ncdCx^x,) > . 

>*MH 
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18. 

Generalizing the above argument, we may consider any 

transitive relation sCx.x')  with the following properties: 

vx(s(x,x)l  and Vx.x^x" [s (x.x') A SCX'.X") 3S(X,X")] . 

It is possible then to verify the following metatheorem: 

Metatheorem.  Suppose that   a =  <  4>(x) | P | ^(x.x1) > 

Nad been proved.  Let  sCx.x')  be a transitive relation 

such that for any lemma of the form < p(x) | B j q^.x') > 

used in proving a , where  B  is an assignment statement 

of P , it is possible to prove < p(x)| B | qCx.x') A s(x,x,)> , 

Then the assertion  a+ = < (j)(x) | P | ^(x.x') A SCX.X') > 

is also true for the complete program. 

Thus it is sufficient to treat assignment statements in 

incrementing our claims.  In the previous example, the only 

«««ügnment statements one has to consider are 

x2   ■*"  x2   '   xi'    ind 

2   ' 

r 
which obviously preserve   the     gcd     function. 

In order to prove  the  metatheorem, oue  has  to  inspect 

all   the non-assignment   rules  and verify   that   if    s     was 

preserved   in   the   constituents   it  will   be  preserved  in  the 

hi K^er  scgwent. 

mm 
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19. I 
Example  2:     Partition   (Hoare   [1961]) 

The purpose  of the program given below is  to rearrange 

the elements  of an  array    A    of    n+lf   n > 2   ,   real numbers 

A[0],. .. ,A(n]       and  to  find  two  integers     i     and     j,   such 

that 

0  *  j   <  i   $ n 

and  for  the   rearranged  array 

VaVb[(n  ra<iAJ<b^n)3 A[a]   *  A[b]]   . 

In other words,  we would like  to rearrange  the elements  of    A 

into two non-empty partitions  such  that  those  in the   lower 

partition    A[0],. .. ,A[i-1 ]     are  less  than  or equal  to those 

in  the  upper partition    A[j+1] A[n]   ,  where     0   O   <  i   ^ n   . 

P 

s ; 

m: 

START; 

r ♦ A(n*2];     (i.j)   -   (0,n); 

while     i   5:  j     do 

*-!     begin 

e:     begin    b:     while  Afi]   <rdoa:     I ♦ i  ♦  I   ; 

d:     while   r<    Afjjd^    c:     J ♦ j   "  1 

end ; 

k:     if.    i   ^  j     do    h:     beg 1,1     f:   A(i]  4»    A[jJ; 

g:   (i.j)   ♦   (i*l,j-l) 

end 

fcnd     I ; 

HALT. 

IMM mmm m—m 
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20. 

We will  prove   in  detail   termination  only.     Our proof 

follows  the  ideas presented in Hoare's   [1971]   informal  proof 

of termination.     We  introduce  the  following abbreviations: 

a(i)   -.  3p[i   ^  p   < n  A   r  $  A[p] ] 

I 

ß(j)   =  3q[0   ^  q   <   j   A   Afq]   $   r]   . 

These   invariants   are  used to ensure  that  while     i     is   stepped 

up   and    j     is  stepped down  they  do not  exceed the  bounds  of 

n     and    0     respectively, 

Lemma a     (Assignment   Rule) 

o 
< a(i)   A  ßO)   A  A[i]   <   r 

|  u:    i   -e   i   +   1   | 

ad')   A  BCj')   A     [!'   >  j'   v  j-i   >  j'-i'l   A  n-i   >n-il   > 

Clearly     B(i)     validity  is   invariant  since     j     is  not 

modified by  this   statement.     From    a(i)     correctness  we   infer 

the  existence  of    p    which   since    A[p]   >   r    must  be    p  >   i   ,  so 

that  wc  might   take   the  same     p    to establish     a(i+l)   =  afi')   . 

The  statement   about     n   -   i     decreasing will  be  used   for  termina 

tion  of the  while   statement   b   ,  while  the   function     j-i     will 

be   used   for proving  termination  of    m   .     Both   are   over    the 

domain  of non-ncgat i vc   integers.     The  alternatives   presented 

;i i ■    fha!  c 11 he i   tin      i inn ' J on   is  decreasing   (non - increas ing) 

or     j'    -   i'     which   will    imply   that   this  nuis"   be   the  last 
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executiün of Ä .  Note that if the second holds true, then 

j ' - i *  is not defined. 

Lemma b  (While Rule) 

Using Lemma a with 

pCx) = a(i) A ß(j) 

qCx.x') E oi(i') A ß(j') A (i' > j« v j - i ^ j« - i'] 

u(x) E n - i , 

we get 

< a(i) A ß(j) 

I   b:   while  A[i]   <   rdoa:   I ♦   i  ♦  1 

00')   A   [i-   >   j'   v   j   -   i  ^  j«   -   i']  A  AMi'l   >.  r >   . 

Note  that we  do not  need    aCi1)     any more,  but  will  use   instead 

the  conclusion  of  the while's   termination    A^i']   ^  r    which 

also implies     i'   S n. 

Lemma c     (.Assignment   Rule) 

< A[i]   ^  r A  S(j)   A  A[j]   >   r 

I    c:  j ♦ j  - 1  | 

6(3«)     A  A^']   ^   TA   [i'   >   j'   v   j   -   i   >,  y   -   i']   A   j   >   j' > . 

The  function ensuring  termination   for the   inner while  d  is  j   . 

Lemma d     (Whi'e   Rule) 

From Lemma  c with 

pU)   E  Ali]   >.   r A   S(j) 

qCx.x')   E   ßCj')   A   A'li']   >,   r A   [i'   >   j'   v   j   -   i   >.   j'    -   i'] 

u(x)   E   j   , 

we   get 

<   A[i]   >   r  A   ßfj) 

I   d:   wh i Le      r'A[j)doc:j^j-l    | 

A' [ ' ' 1   >.   f   A   ( i '   >   J '   v   j   -   i   -    j •    -   i • ]   A   A' f j ' ]   C   r  > 

1 

warn 
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22. 

I 

t 

i   >.  j '   -   i' ] > 

Lemma e     (Concatenation  Rule) 

ComMninR I.eminas  b  and  d we  get 

|   e:     begin b;   d end  | 

A'U']   s?  r  $:  A'fi']   A   [i-   > j«   v  j 

Lemma  f    (Assignment   Rule) 

< A[j]   ^   r  <  A[i]   A   i   ^  j 

I   f:   A[i]   ** A[j]   | 

A'[i']   ^   r  ^  A'tj1]   A  j   -   i   . j-   -   i-   A  i-   ^   j.   >   . 

The  condition     i   ^  j    is   added since  it   i.i  known  to be  true   if 

we  enter statement     h   .     Clearly,   after exchanging    A(i]     and 

Mj]    the previous  inequalities  are  reversed. 

Lemma  g     (Assignment  Rule) 

< i   O   A  Ap]   ^   r <  A[j] 

I g:   (i,j)   ♦   (i + lj-l)   | 

II > j' v (j - i > j' - i* A 0(1') A 0(3')] > • 

This result is obtained hy  case anal/sis:  Either 

1 + ! ^ j " ! . in which case we have  I < i* C j» < j  and 

we can take p = j  to establish 0(1»)  and q = i  to 

establish  ß(j') .  The other case is  i + 1 > j - 1  or, in 

other words,  i' > j' . 

» 
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Lewa h    fCmtcatenation  Rule) 

Ky  combining  Lemmas   f and  g we   get 

< i   <  j   A  A[j]   i  T  $ A[i] 

|   h:   begin   f;     g end   | 

i'    •   j'   v   [j   -   i   >  j'   -   i'   A  a(i')   A  ßCj'h   >   . 

Lemma k     (If   -   do   Rule) 

By Lemma h wc  get 

< A[j]   <   r   <:  A[i] 

I   k:   il     i   ^   j   do  h   | 

i'   >   j*   v   [j   -  i   >  j*   -  i'   A  aCi')   A  ß(j')]   >   . 

Note   that   in  the  case where  the do  clause  is  skipped 

i   >  j   ,  so  that  the  conclusion  is   still   correct. 

Lemma I     (Concatenation  Rule) 

Combining  Lemmas  e  and k  we  obtain: 

< oi(i)   A   B(j) 

|   I:   begin  e;   k  end   | 

i'   >   j '   v   [j   -  i   >  j-   -   i-   A  otU')   A  e(j")]   > 

Note  that by   the   consequence  rule  this   can be   rewritten  as 

< «(i)     A    ß(j) 

|   i:   begin  e;   k  end   | 

Ki'i?   j')   3 ati')   A   ßtj')]   A   ff   >   j'   v   j   -   i   >  j«   -   !•]   > 

which  is   in   a   form more  useful   for the  next   step. 

Now we   are   ready  to prove  termination  of the encompassing 

while  statement.     We  have  shown,   in   fact,   that   after one execution 

of    £    starting with     a(i),   ß(j)     both  valid,  we either have 

i'   >  j'     which  ensures no  more   repetitions  of    l"    or have 

«(i')i   ßU')     true   again  and a  termination      function    j   -  i 

M^MMMM^M 
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strictly  decreasing. 

Lemma m    (While   Rule) 

From lemina e with 

p(x)   =   a(i)   A  8(j) 

qCx.x')   =   i«   ^  j-   3   [a(i')   A   BCj')]   , 

we get 

< a(i)    A ß(j)   |   m:  while     i   <   j   do  l   | 

Lcmma »  (Assignment ♦ Concatenation Rules) 

Establishes the initial conditions: 

< n >, 2 | s: r ^ ACn*2J; (i,j) ♦ (0,n) 

Lemma ?     (Concatenation  Rule) 

Concatunatiou  of  lemmas  m  and s   yields 

< n   >  2   |   P   |   T  >   , 

which  shows   termination  of    P   . 

T  >   . 

ad1)   A  ß(j')   >   . 

■MM^MHü 
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